Search results for "Regulatory molecules"

showing 3 items of 3 documents

Extending the usefulness of extraembryonic mesenchymal stem cellsin regenerative medicine: expression of novel markers, immunoregulatory molecules, a…

2010

Mesenchymal stem cells (MSC) are considered promising tools in regenerative medicine applications. Even if they are already applied clinically, their extended characterization is being increasingly viewed as a needed feature, in order to avoid contrasting results when translating “in vitro” experiments to “in vivo” approaches. We recently demonstrated in human MSC isolated from the umbilical cord matrix (HEMSC) the expression of novel markers indicative of their stemness, as well as differentiative and immune properties [1]. HEMSC were cultured and subject to multiple molecular and morphological analyses to determine the expression of markers of interest. Undifferentiated HEMSC expressed im…

Settore BIO/16 - Anatomia Umanamesenchymal stem cells Wharton's jelly markers immunoregulatory molecules umbilical cord
researchProduct

Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles

2019

Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now…

0301 basic medicineNervous systemCell CommunicationReviewSynaptic Transmissiontetrapartite synapseRegulatory moleculesmemorylcsh:Chemistry0302 clinical medicineCell to cell communicationSettore BIO/10 - BiochimicaSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyNeuronsDrug CarriersNeuronal PlasticitylearningBrainGeneral Medicineglial cellsComputer Science ApplicationsCrosstalk (biology)medicine.anatomical_structureNerve cellsextracellular vesiclesNeurogliavolume transmissionBiologytripartite synapsisExtracellular vesiclesCatalysisInorganic Chemistry03 medical and health sciencesNeuroplasticitymedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyMemory Disorderssynaptic plasticityOrganic Chemistryglial cellwiring transmissionBiological Transport030104 developmental biologylcsh:Biology (General)lcsh:QD1-999nervous systemAstrocytesSynapsesSynaptic plasticitytripartite synapsiextracellular vesiclesynaptic plasticity.NeuroscienceBiomarkers030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Might exogenous circular RNAs act as protein-coding transcripts in plants?

2021

Circular RNAs (circRNAs) are regulatory molecules involved in the modulation of gene expression. Although originally assumed as non-coding RNAs, recent studies have evidenced that animal circRNAs can act as translatable transcripts. The study of plant-circRNAs is incipient, and no autonomous coding plant-circRNA has been described yet. Viroids are the smallest plant-pathogenic circRNAs known to date. Since their discovery 50 years ago, viroids have been considered valuable systems for the study of the structure-function relationships in RNA, essentially because they have not been shown to have coding capacity. We used two pathogenic circRNAs (Hop stunt viroid and Eggplant latent viroid) as …

Protein codingViroid-derived peptidesPlant coding circRNAsvirusesfood and beveragesRNA CircularCell BiologyPlantsBiologyVirus ReplicationPlant pathogenic RNAsViroidsPlant VirusesRegulatory moleculesCell biologyNon canonical transcriptsGene expressionRNA ViralSolanum melongenaPoint of ViewMolecular BiologyCircular RNAsPlant DiseasesArticle Commentary
researchProduct